Mathematics

Question


PLEASE HELP ME WITH IT.


In the figure given below , AB and AC are two chords of a circle of center O and radius r. If AB= 2 AC and the perpendiculars drawn from the center on these chords are of lengths 'a' and 'b' respectively. PROVE THAT 4b^2= a^2+3r^2

This question is related to lesson CIRCLES

PLEASE HELP ME WITH IT. In the figure given below ,  AB and AC are two chords of a circle of center O and radius r. If AB= 2 AC and the perpendiculars drawn fro

1 Answer


  • OK.  I did it.  Now let's see if I can go through it without
    getting too complicated.

    I think the key to the whole thing is this fact:

         A radius drawn perpendicular to a chord bisects the chord.

    That tells us several things:

    -- OM bisects AB. 
       'M' is the midpoint of AB.
       AM is half of AB.

    -- ON bisects AC.
        'N' is the midpoint of AC.
       AN is half of AC.

    --  Since AC is half of AB,
         AN is half of AM.
         a = b/2 

    Now look at the right triangle inside the rectangle.
    'r' is the hypotenuse, so

                                                a² + b² = r²

    But  a = b/2, so             (b/2)² + b² = r²

    (b/2)² = b²/4                   b²/4   + b² = r²

    Multiply each side by 4:     b² + 4b² = 4r²
                                           -  -  -  -  -  -  -  -  -  -  -
                                                0  + 5b² = 4r²  
    Repeat the
    original equation:                a² +  b² =  r²

    Subtract the last
    two equations:                  -a² + 4b² = 3r² 

    Add  a²  to each side:              4b²  =  a² + 3r² .    <=== ! ! !